Unsupervised Feature Learning Architecture with Multi-clustering Integration RBM
نویسندگان
چکیده
منابع مشابه
Unsupervised Feature-Rich Clustering
Unsupervised clustering of documents is challenging because documents can conceivably be divided across multiple dimensions. Motivated by prior work incorporating expressive features into unsupervised generative models, this paper presents an unsupervised model for categorizing textual data which is capable of utilizing arbitrary features over a large context. Utilizing locally normalized log-l...
متن کاملIntegration of dense subgraph finding with feature clustering for unsupervised feature selection
In this article a dense subgraph finding approach is adopted for the unsupervised feature selection problem. The feature set of a data is mapped to a graph representation with individual features constituting the vertex set and inter-feature mutual information denoting the edge weights. Feature selection is performed in a two-phase approach where the densest subgraph is first obtained so that t...
متن کاملUnsupervised Learning of Deep Feature Representation for Clustering Egocentric Actions
Popularity of wearable cameras in life logging, law enforcement, assistive vision and other similar applications is leading to explosion in generation of egocentric video content. First person action recognition is an important aspect of automatic analysis of such videos. Annotating such videos is hard, not only because of obvious scalability constraints, but also because of privacy issues ofte...
متن کاملUnsupervised Multi-Domain Adaptation with Feature Embeddings
Representation learning is the dominant technique for unsupervised domain adaptation, but existing approaches have two major weaknesses. First, they often require the specification of “pivot features” that generalize across domains, which are selected by taskspecific heuristics. We show that a novel but simple feature embedding approach provides better performance, by exploiting the feature tem...
متن کاملMulti-modal Unsupervised Feature Learning for RGB-D Scene Labeling
Most of the existing approaches for RGB-D indoor scene labeling employ hand-crafted features for each modality independently and combine them in a heuristic manner. There has been some attempt on directly learning features from raw RGB-D data, but the performance is not satisfactory. In this paper, we adapt the unsupervised feature learning technique for RGB-D labeling as a multi-modality learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2020
ISSN: 1041-4347,1558-2191,2326-3865
DOI: 10.1109/tkde.2020.3015959